

A Windows DLL and sample C and VB programs for IMDG Code
Substances and Calculations

(TUPS Libraries)

Author: Exis Technologies Limited, March 2021

This is a toolkit for software developers wanting to integrate IMDG Code functionality into their
own in-house cargo management systems. In this transition year it can be used with a data file for
either IMDG Amendment 39-18 or 40-20.

With these routines you can retrieve substance data from the Dangerous Goods List (chapter
3.2). Fields such as Name, Class, Marine Pollutant, Special provisions, Packing instruction
number, Limited Quantity, Stowage and Handling, Segregation, Properties and Observations are
available. These records are retrievable by UN Number and variant. 'Next' and 'Previous' UN
Numbers are also locatable. You can also retrieve the general stowage requirements from IMDG
part 7 for a substance, according to its class, subhazards, packing group, etc.

You can also check the stowage and segregation requirements for several substances in a
mixed load; whether it is prohibited, allowed on deck only, or on or under deck, on a
passenger or cargo sailing; and whether the mix of substances need to be segregated from one
another. Segregation is according to the classes and subsidiary hazards of section 7.2.4 and
7.2.7, the segregation groups of chapter 3.1, special requirements from the Dangerous Goods
List such as the SG codes indicating 'segregation as for class xxx' or 'separated from xxx', and
other rules and exceptions of chapter 7.2. The degree of segregation required between two
loads can also be obtained.

The substance index data is also available if it is included in the data file.

The text of the Special Provisions of chapter 3.3, and the Packing, IBC and Tank Instructions and
Provisions of chapters 4.1 and 4.2 are retrievable by name.

The 32-bit windows DLL is called ctups.dll. Following normal windows conventions, the routines
use the WINAPI calling convention.

There are sample programs with source code written in C and VB. These are intended to show
very simply how the routines can be called rather than to be the basis of a complete end-user
system. We also supply ctups.h (for C) and tupsdecl.bas (for VB) for you to include in your own
programs to define all the routines and constants. For calling from other languages you can use
these as a guide to write your own equivalent. C programs should be linked with the import library
ctups.lib (unless you are doing LoadLibrary and GetProcAddress calls). VB programs need to find
the dll, for instance by putting it into the <system32> directory or your program's working
directory.

A similar C# DLL for .NET users and a Java program (Subsdemo.java) is also available. They
use different data files and include other features such as validating packaging types and sizes
according to the packing instruction.

The C data file is around 210K in size, or 290K with the substance index data. It is read into
memory at startup, and subsequent calls will not require disk access. In speed tests it can do a
segregation check of around 35000 two-item loads per second on an Intel Core2 quad core

2.66GHz processor. The time is dominated by the two substance lookups per load.

Either IMDG Amendment 39-18 or 40-20 may be used operationally during the transition 'year' of
2021 and part of 2022. 40-20 becomes mandatory on 1 June 2022. Amendment 41-22 is due to
be published in late 2022, and the year 2023 will be the next transition period during which either
Amendment can be used. Amendment 41 will require another data file, DLL and a ctups.h
change, but Exis always attempts to maintain upwards compatibility. There is generally a small
errata or corrigenda update published about one year after the Amendment; these can be
expected to need a new data file but only rarely a DLL or H file change.

A note for users upgrading from Amendment 39-18

To allow for longer fields being given to UN 3481, the string 'specprov' has been extended in
ctups.h. Existing programs using ctups.h will need to be recompiled to use this DLL and the amdt
40 data file. The new DLL can also be used with the existing amdt 39 data file and will then
calculate using the amdt 39 rules.

The old DLL should not be used with the amdt 40 data file. It may fail accessing some UN
Numbers and the segregation results will not be according to amdt 40 rules.

The download package

In the zip file you have 12 files:

readme.pdf these instructions
ctups.dll the DLL
ctups.h the H file to include in your C program
ctups.lib the import library to link with your program
subs.ind the amendment 40 data file

subsdemo.exe a simple demonstration program written in C
subsdemo.cpp the source for subsdemo.exe
subsdemo.rc the resource script for subsdemo.exe
makedemo.bat the commands to compile and link subsdemo

Getting started with subsdemo.exe or VBexample.exe

The exe files, ctups.dll and subs.ind should be in the same directory. At first you can only look up
UN Numbers ending in 5. Run subsdemo.exe (for a C example) or vbexample.exe (for VB).

To look up a substance, type 1235 in the UN Number box, and press 'Substance'. You see the
primary class, packing group, stowage category, limited quantity value, emergency schedule and
packing instruction for Methanol, and the stowage and segregation comments. All the other DGL
fields are available, but subsdemo is only meant to show the principal of how things are done.

UN 1235 var 0 Class 3 PG II Cat E LQ= 1 L EQ=E2 EmS=F-E,S-C PI=P001 TI=T7
METHYLAMINE, AQUEOUS SOLUTION||
SG35 Stow "separated from" acids.
SG54 Stow "separated from" mercury and mercury compounds.

Type 2545 and press 'Substance'. You see variant 1 of HAFNIUM POWDER, DRY with a
variation description 'Packing group I.' after the name. Type 2 into the variant box, press
'Substance' again, and see the second variant, packaging group II.

To look up a packing provision, type PP4 in the phrase name box and press 'Phrase'.

Packagings shall meet the packing group II performance level.

To see a special provision, type 191 into the box and press 'Phrase' again.

Receptacles with a capacity not exceeding 50 mL containing only non-toxic constituents are
not subject to the provisions of this Code.

Examples of other phrases are: packing instruction (P302), IBC instruction (IBC02), tank
instruction (T3), IBC provision (B6), tank provision (TP10).

To check for segregation requirements within a load, start a load by clicking the radio button for
'Closed / Passenger'. Type 3295 in the UN Number box, 1 in the variant box, and press 'Add to
load'. You see return code 98 - this substance is not allowed on passenger sailings. Start another
load by clicking the radio button for 'Closed / Cargo'. Press 'Add to Load', and this time it is
allowed (return code 0). The label numbers (bitsfields 20 and 1) are decoded as primary class 3,
and a possible marine pollutant (refer to the description of function TupsLabCom). The other
numbers are stowage and segregation comments for the load so far. Type one of the numbers
such as 162 into the comment number box and press Comment to see For marine pollutants,
under deck stowage is preferred., a requirement from IMDG 7.1.4.2 for marine pollutants which
may be stowed under deck. Add another substance by putting 3285 and 2 in the UN and variant
boxes, and press 'Add to Load'. There is no clash, and class 6.1 (bitfield 800) is added to the

labels. Add a few more substances (e.g. variant 0 of substances 1345, 1515, 1945), and you will
start to see clashes - a set of 3 numbers means substance sequence number 'i' clashes with
number 'j', and the degree of segregation required is 'k'. Start a new load by clicking Cargo/Tank
and you may also see return code 97 - this substance is not allowed in tanks (e.g. UN 1945).

Having built one load you can check how it should be segregated against another one. Start the
second load by clicking the radio button for 'Closed / Second', and add a few substances to that.
In this case the set of 3 numbers means that substance sequence number 'i' in load one clashes
with number 'j' in load two and the degree of segregation required is 'k'. For a more complete
explanation refer to the technical document section "Compatibility between loads".

Recompiling the sample programs

Subsdemo is a small, simple windows program. If you want to add more features, edit the .cpp or
.rc file. makedemo.bat compiles and links the program. This works with Microsoft C++ versions 5
and 6. Slight changes may be needed for other compilers. It assumes that 'cl', 'rc' and 'link' are to
be found in the path, an that environment variables INCLUDE and LIB point to the standard .h
and .lib files.

VBexample is an equivalent program in VB, which is most easily worked with inside Visual
Studio. If you want to run the program from inside Visual Studio, it is easiest to uncomment the
'ChDrive' and 'ChDir' calls in 'Sub Form_Load', and set the values to your own working directory.

Specification of the routines

Initialization

int TupsInit(char *name)
Function TupsInit (ByVal fname As String) As Long

This should be called first. It opens the substance file and performs various initializations.

 name the filename, "subs.ind", with any necessary directory specification.

 return value -1 = Can't open file
 -2 = Can't get enough memory (unlikely as subsdemo runs in only 4 Mb)
 -28 = Unactivated copy.

 +ve = OK

With an unactivated copy and other protection failures, the system works in 'demo mode'.
This only accepts UN Numbers ending in 5.

Substance Lookups

int TupsSub(int un, int suffix)
Function TupsSub (ByVal un As Long, ByVal suf As Long) As Long

 Finds a substance on file.

 un UN Number
 suffix suffix

Note: Where a UN Number has no variants, it will have suffix 0 (e.g. UN 2050, suffix 0).
Those with variants are numbered 1 upwards (e.g. 2810 suffixes 1, 2 and 3 are for
packing groups I, II and III). A search for suffix 0 or 1 will equally find either of 0 and 1.
Alternatively, suffix may be -1 or -2, to find the respectively the next or previous UN
Number (and suffix 0 or 1) to the one specified.

 return value 99 if no such substance
 0 = OK

int TupsRead(int field, char *buf)
Sub TupsInfo (ByVal field As Integer, buffer As Any) 'used for TUPS_INFO and
 'TUPS_STOW*
Sub TupsRead (ByVal field As Integer, ByVal buffer As String) 'used for other values

Reads data for the substance last found with TupsSub. 'buf' can be variously a pointer to
a char array, an array of shorts or a 'struct tups' into which the data will be copied. Note
that the user must provide a buffer of sufficient size.

 field TUPS_NAME retrieves Proper Shipping Name, qualifying descriptive text

and variation comments. A '|' character (ascii 124) separates the three
items, and a NULL terminates it. The string may include embedded
linefeed characters.

 TUPS_STOW retrieves (as an array of shorts, terminated by a zero) the
stowage and segregation comment codes from columns 16a and 16b
of the Dangerous Goods List. See TupsCom for converting the codes
to printable phrases.

 TUPS_STOWC retrieves general stowage comment codes applicable to

cargo ships, for this class, subrisks, packing group, etc., from part 7 of
the IMDG Code.

 TUPS_STOWP ditto for passenger ships.
 TUPS_PROP retrieves as text the properties and observations from column

17 of the Dangerous Goods List.
 TUPS_INFO retrieves assorted data from the Dangerous Goods List:-

 struct tups
 { short un; // UN Number
 short suf; // suffix (variant number)

char prim[5]; // primary class
char secn[6]; // secondary class (subrisk)
char tert[4]; // tertiary class
char mp; // Marine pollutant (Y or null)
char ulineems; // Underlined EmS. 1 = fire, 2 = spillage, 3 = both
char ems [8]; // Emergency Schedule
char classcode[5] // ADR classification code
char flags; // additional user data required - see below
char specprov[40]; // special provisions
char lq[10]; // limited quantity
char pi[49]; // packing instructions
char pp[26]; // and provisions
char ibci[11]; // IBC instructions
char ibcp[15]; // and provisions
char tankun[16]; // UN tank instructions
char tankimo[1]; // IMO tank instructions, no longer in use
char eq[8]; // excepted quantity
char tankp[25]; // tank provisions
char flash[26]; // flashpoint
char explim[20]; // explosive limits
char stow[15]; // stowage SW and H codes
char seg[55]; // segregation SG codes
char cvl[8]; // Coded Variant List value, used in EDI files
char scat[3]; // stowage category, A to E or 01 to 05
char pg[4]; // packing group, null, I, II or III
char state; // S,L,G,E,A for solid, liquid, gas, explosive
 // substance or explosive article

};

which is declared in an H file. Note this has changed from what was used in
previous amendments, in order to accommodate the changes to the lengths of
the special provisions of UN 3481 .
or 'Type tups' which is declared in tupsdecl.bas
Note that there are 2 versions of this routine for VB, 'TupsRead' to return a string,
and 'TupsInfo' to return an array or a 'tups' structure.

The value returned in 'flags' indicates whether any additional information is required from
the user to print on a Dangerous Goods Note or manifest. It is the combination of:-
1 Technical name required (special provision 274 and others)
2 Possible marine pollutant
4 Flashpoint required (class 3 or subrisk 3)
8 Control and emergency temperatures (items under temperature control)
16 Radionuclide, category, activity and transport index required (class 7)
32 May be carried in limited quantity
64 Net explosive content required (class 1)
128 Warn user about special provision 900 and similar (certain formulations are

prohibited)

int TupsCom(short code, char *cbuf)
Function TupsCom (ByVal code As Integer, ByVal buffer As String) As Long

 Obtains the comment text related to a numeric comment code. The text will be null-

terminated and may include linefeed (ascii 10) characters.

 code code number (retrieved from TupsRead) to look up

 cbuf char array into which the phrase will be copied

 return value 0 = OK
 1 = no such comment.

int TupsPhrase(char *code, char *cbuf)
Function TupsPhrase (ByVal name As String, ByVal buffer As String) As Long

 Obtains the text related to a text comment code. The text will be null-terminated and may
include linefeed (ascii 10) characters. The codes may be packing instructions Pxxx, IBC
instructions IBCxx, tank instructions Txx, packing provisions PPxx, Bx or TPxx, or special
provisions, numeric. Provisions retrieved by TupsRead may include several codes (e.g.
"PP25 PP26 PP31") separated by spaces. It is for the user to split these into separate
null-terminated codes for this routine.

 code phrase name to look up

 cbuf char array into which the phrase will be copied

 return value 0 = OK
 1 = no such comment.

Hint: If the user enters a UN number, call TupsSub for that UN number and suffix zero. For a
return code of 99 tell him 'invalid UN number'. Otherwise, if it retrieves suffix zero, there are no
variants and you can show him the substance details. If it retrieves variant 1, call
TupsRead(TUPS_NAME... to get the description of the first variant, then TupsSub and TupsRead
for variants 2, 3, etc. until a return of 99 indicates no more variations. Ask him to select one.

void TupsDistance(short opclo, short degree, short shiptype, short ondeck, short *foraft,
short *athwart, short *notes)

Gives the separation distances required for a given segregation value, according to the
ship and CTU type.

opclo open/closed status, 0=closed/closed, 1=closed/open, 2=open/open

degree 1 = away from, 2 = separated from, etc.

shiptype 1 = container ship, 2 = hatchless container ship, 3 = ro-ro

ondeck 0 = CTUs under deck, 1 =CTUs on deck

Sets up values in foraft and athwart for distances fore-and-aft and athwartships in metres (ro-ro)
or container spaces (container ships), but value 24 means metres even on container ships, 99
means prohibited in this direction.

notes is set to 0, no note,
1 = or 1 bulkhead (and no distance restriction)
2 = and on a different deck
3 = 2 decks or 2 bulkheads
4 = this distance and 2 decks, or 2 bulkheads and no distance restriction

5 = and 1 bulkhead
6 = and 2 bulkheads
7 = and not in or above same hold

Checking a Single Load

void TupsNewLoad(int mode, int type, short *clashlist, int max_clash)
Sub TupsNewLoad (ByVal mode As Long, ByVal utype As Long, clist, ByVal les As Long)

For validation of a single load, this empties the current load, and specifies whether it is
to be checked for passenger or cargo sailings, and open or closed units, or a tank.

 mode TUPS_PSNGR for a passenger sailing
 TUPS_CARGO for a cargo sailing
 and may be or'ed with
 TUPS_NOCHECK to suppress validation as each substance is added.

 type TUPS_OPEN
 TUPS_CLOSED
 TUPS_TANK according to the unit type

 clashlist array of shorts which becomes filled with triplets describing each clash
 a) sequence number of first substance counting from 1
 b) sequence number of second substance
 c) degree of clash - see values 1 to 10 for TupsAddSub
 The list is terminated by a zero value. With a single load (a) < (b).
 With VB, pass the first element of the array, clashlist(0)

 max_clash maximum number of clashes to report. Filling of clashlist stops when this

is reached. Thus clashlist can be dimensioned to [3*max_clash +1].

int TupsAddSub(int un, int suffix)
Function TupsAddSub(ByVal un As Long, ByVal suf As Long) As Long

Adds a substance to the load, and (unless TUPS_NOCHECK applies) validates it against
the load so far. Details of clashes with previous substances will appear in 'clashlist'

un UN number
suffix suffix

return value 99 if no such substance
 98 if substance prohibited (entirely, or on this passenger sailing).
 97 if not valid in a tank / must be in a tank, when this unit isn't / is a tank.
 96 if this explosive is not allowed in this open unit.
 88 if failed to expand working space (unlikely with 32-bit. 16-bit versions

were limited to about 440 substances in a single load).
 1 to 4 highest clash value if this substance clashes with others already

in the load.
 0 if no clash or if TUPS_NOCHECK is set.

With a return value of 88 upwards, the substance is not added to the load, and so is not
checked against future substances which will be added.

Return values 1 thru 4 are 'away from', etc., as in section 7.2 of the IMDG Code.
1 "Away from"
2 "Separated from"
3 "Separated by a complete compartment or hold from"
4 "Separated longitudinally by an intervening complete compartment or hold from"

We formerly also used numbers 5 to 10 in relation to explosives, but these provisions are
removed from recent IMDG amendments
5 If UNDER DECK – "Separated from". If ON DECK - not less than 6 metres apart.
6 As 4, and also as remote as possible from each other.
7 As 4, and also as remote as possible from each other, and not more than 50 kg

total net explosive mass per ship.
8 As 4, and also as remote as possible from each other, and not more than 10 kg

total net explosive mass per ship.
9 Not on same ship
10 If UNDER DECK – As 4. If ON DECK - not less than 6 metres apart.

Note: In setting the highest clash value, 5 is more severe than 2, but less than 3.

Hint: Items carried in limited or excepted quantities (see IMDG chapters 3.4 and 3.5) are
allowed on or under deck on both passenger and cargo sailings, need not bear hazard
labels, and need not be segregated from other incompatible goods. Don't call
TupsAddSub for limited or excepted quantity substances.

int TupsAddSubGrp(int un, int suffix, char *grps)
Function TupsAddSubGrp(ByVal un As Long, ByVal suf As Long, ByVal grps As String) As Long

As TupsAddSub but with the possibility of specifying additional segregation groups the
substance belongs to

un UN number
suffix suffix
grps null-terminated list of groups. Group numbers 1 to 18 are represented by

digits 1 to 9 then letters A to I (or a to i), or byte values 1 to 18.

return value as TupsAddSub

int TupsEditLoad(int seq, int un, int suffix)
Function TupsEditLoad (ByVal seq As Long, ByVal un As Long, ByVal suf As Long) As Long

 Changes a substance in a load, but does not recheck the validation.

seq sequence number within the load, numbered from 1 upwards.
un UN number (or zero to remove it from the load)
suffix suffix

 return value 99 to 96 as with TupsAddSub

0 = OK
int TupsReCalc()
Function TupsReCalc () As Long

Re-validates a load, if it was originally defined as TUPS_NOCHECK, or when one or
several changes have been made with TupsEditLoad.

return value 0 if no clash
 1 to 10 highest clash value if a clash.

void TupsLabCom(short *lab_com)
Sub TupsLabCom (labcom As Integer)

retrieves the aggregate list of labels and stowage comment codes for the items in the
load.

lab_com filled with a list of consolidated label and comment data for the current
load.

lab_com[0] bitfields for primary labels
lab_com[1] bitfields for subrisk labels
lab_com[2...] comment codes. Use TupsCom to convert to phrases.
With VB, pass the first element of the array, lab_com(0)

The bitsfields for labels represent (in hex):

0001 marine pollutant
0002 explosive (1)
0004 flammable gas (2.1)
0008 non-flammable gas (2.2)
0010 toxic gas (2.3)
0020 flammable liquid (3)
0040 flammable solid (4.1)
0080 spontaneous combustible (4.2)
0100 dangerous when wet (4.3)
0200 oxidizing substance (5.1)
0400 organic peroxide (5.2)
0800 toxic (6.1)
1000 infectious (6.2)
2000 radioactive (7)
4000 corrosive (8)
8000 miscellaneous (9)

 Bit '1' for a primary label indicates a marine pollutant label is definitely required. '1' for a
secondary label indicates one may be required, depending on concentration or
composition (at least one item was 'marine pollutant bullet', but none were definite marine
pollutants)..

 lab_com[2] will always be 1 (prohibited), 2 (as approved by competent authority), 3 (on-
deck only) or 4 (on or under deck). Some other values later in the list will restrict the load
to various parts of a ship, e.g. 32 (Clear of living quarters) or 60 (Stow in a well ventilated
space).

Compatibility between loads.

Having built one load with TupsNewLoad and TupsAddSub, TupsNewLoad can be called again
with a mode of TUPS_SECOND Tups_AddSub is then called for each substance in the second
load.

Note:

a) if the first load was known to be valid, time is saved if it is built with a
TUPS_NOCHECK flag.

b) further loads can be checked against the first with more TupsNewLoad /
TUPS_SECOND calls.

c) TupsEditLoad, TupsReCalc and TupsLabCom are not appropriate with a
TUPS_SECOND load.

d) in 'clashlist', (a) is the sequence number of an item within the first load, (b) within the
second.

e) to check ten loads against each other build load one as a first load, then check it
against loads two to ten in turn. Then build load two as a first load and check it
against loads three to ten in turn, and so on, i.e. you need to use a nested loop.

Substance index lookups.

Routines exist to locate the position at which a name in the substance index would be located,
and to retrieve the entry at a particular location.

int IndexPos(char *name)

finds the row number (from 0 to about 4600) closest to position at which 'name' would
exist. Any digits, spacing or punctuation in 'name' will be ignored to
match IMO's sort order.

name name to look up.

 return value row number, or -1 if the index data was not included in the data file

char *IndexLine(short num)

returns a pointer to the text of the entry at 'num', as if it were a variable length struct of
unno[5]; class[5]; mp[2]; name[];

num row number to look up.

 return value index data, or NULL if num was out of range

Notes for VB users

In the above descriptions, 'short' means 'Integer', 'int' means 'Long', and 'char*' means String. The
function declarations are thus:-

Function TupsInit (ByVal fname As String) As Long
Sub TupsRead (ByVal field As Integer, ByVal buffer As String)
Sub TupsInfo (ByVal field As Integer, buffer As tups)
Function TupsSub (ByVal un As Long, ByVal suf As Long) As Long
Function TupsCom (ByVal code As Integer, ByVal buffer As String) As Long
Function TupsPhrase (ByVal name As String, ByVal buffer As String) As Long
Sub TupsNewLoad (ByVal p1 As Long, ByVal p2 As Long, clist, ByVal les As Long)
Function TupsAddSub(ByVal un As Long, ByVal suf As Long) As Long
Function TupsAddSubGrp(ByVal un As Long, ByVal suf As Long, ByVal grps As String) As
Long
Function TupsEditLoad (ByVal seq As Long, ByVal un As Long, ByVal suf As Long) As Long
Function TupsReCalc () As Long
Function TupsEnd () As Long
Sub TupsLabCom (labcom As Integer)
Function TupsClashes (clashes As Integer, ByVal maxnum As Long) As Long
Function Tups_Start (ByVal code As Long) As Long
Sub TupsDistance (ByVal opclo As Integer, ByVal degree As Integer, ByVal shiptype As

Integer, ByVal ondeck As Integer, foraft As Integer, athwart As Integer, notes As
Integer)

To pass an array to the DLL, pass the first element. So for example, the call to TupsLabCom is
 Dim labcom(40) as Integer
 call TupsLabCom(labcom(0))

There is an extra declaration 'TupsInfo', which is the same as TupsRead, but with the second
argument of type 'tups' so you can call
 TupsInfo (TUPS_INFO, details)

Null-terminated strings are not handled nicely in VB, so the sample program includes a
 Function sTrim(s As String) As String
which converts a null-terminated string to a VB String

Contacting Exis Technologies Limited

If you have any questions or comments please contact Exis Technologies Limited by,

email: support@existec.com
telephone: +44 (0)1325 466672
fax: +44 (0)1325 466643

Sample Source Code - C and VB

This code shows data being retrieved and displayed using printf calls. A windows program would show the data in dialog
boxes.

a) Open the file

 if (TupsInit("subs.ind") == -1)

 {printf("subs.ind not found\n"); return 2; }

 ChDir ("\tupslib") ' find the DLL and data file in this directory

 ret = TupsInit("subs.ind")

 results.Text = "TupsInit returned " + CStr(ret)

b) Show various details of UN 2045

 short labc[20], clist[31];

 int un, i;

 struct tups info;

 char buf[700];

 ret = TupsSub(2045,0);

 if (ret ===0)

 { TupsRead(TUPS_INFO, (char *)&info);

 TupsRead(TUPS_NAME, buf);

 printf(" UN %04d %d EmS = %s PI = %s\n Name = %s\n\nStowage:- ",

 info.un, info.suf, info.ems, info.pi, buf);

 TupsRead(TUPS_STOW, (char *)labc); // stowage from DGL

 for (i=0; labc[i] > 0; i++)

 { TupsCom(labc[i],buf);

 printf(" %s\n", buf);

 }

 printf("\nCargo:- ");

 TupsRead(TUPS_STOWC,(char *)labc); // general stowage for

 for (i=0; labc[i] > 0; i++) // this class and packing group

 { TupsCom(labc[i],buf);

 printf(" %s\n", buf);

 }

 TupsRead(TUPS_PROP,buf);

 printf("\n Properties and Observations %s\n",buf);

 }

 Dim subsname As String, codes(20) As Integer, i As Integer

 Dim details As tups

 subsname = String$(5120, 0)

 unno = txUNno.Text

 suf = txSuf.Text

 ret = TupsSub(2045, 0) ' look up the substance

 If (ret <> 0) Then

 results.Text = "TupsSub returned " + CStr(ret)

mailto:support@existec.com

 Else

 Call TupsInfo(TUPS_INFO, details) ' write various details

 Call TupsRead(TUPS_NAME, subsname)

 results.Text = "UN " + CStr(details.un) + " " + CStr(details.suf) + " EmS = " +

sTrim(details.ems) + " PI= " + sTrim(details.pi) + Chr(13) + Chr(10) + "Name= " +

sTrim(subsname)

 Call TupsInfo(TUPS_STOW, codes(0))

 i = 0

 While codes(i) > 0 ' stowage and segregation comments

 Call TupsCom(codes(i), subsname)

 results.Text = results.Text + Chr(13) + Chr(10) + sTrim(subsname)

 i = i + 1

 Wend

 End If

c) Special Provision 274

 ret = TupsPhrase("274",buf);

 if (ret == 0) printf(" %s\n", buf);

 Dim Comment As String

 Comment = String$(5120, 0)

 ret = TupsPhrase("274", Comment)

 If (ret = 0) Then

 results.Text = "Phrase 274 is " + sTrim(Comment)

 End If

d) Show variations of UN 3145

 un = 3145;

 ret = TupsSub(un,0);

 if (ret ==0)

 { TupsRead(TUPS_INFO, &info);

 if (info.suf > 0) // have found variant 1

 { printf("Variations exist\n");

 i = info.suf;

 while(ret == 0)

 { TupsRead(TUPS_NAME,buf);

 p = strchr(buf, '|'); // start of descriptive text

 p = strchr(p+1, '|'); // start of variation description

 printf(" %d - %s\n",i,p+1);

 i++;

 ret = TupsSub(un,i); // look for next one

 }

 }

 }

e) Check 3 items in a load

 TupsNewLoad(TUPS_CARGO, TUPS_CLOSED, clist,10);

 ret = TupsAddSub(1230,0); // methanol

 i = TupsAddSub(1790,1); // hydrofluoric acid, pg I

 if (i > ret) ret = i;

 i = TupsAddSub(1605,0); // ethylene dibromide

 if (i > ret) ret = i;

 if (ret == 0)

 { TupsLabCom(labc);

 printf("Load complies - labels %04x %04x\n", labc[0], labc[1]);

 for (i=2; labc[i] > 0; i++)

 { TupsCom(labc[i],buf);

 printf(" %s\n", buf); // stowage requirements

 }

 }

 if (ret > 0 && ret <= 10)

 printf("LOAD DOES NOT COMPLY Segregation of degree %d required\n", ret);

 // could use clist to say which ones give the problem

 if (ret > 10) printf("Load not valid");

f) Check a 2 item load against the previous one

 TupsNewLoad(TUPS_SECOND, TUPS_CLOSED, clist,10);

 ret = TupsAddSub(1065,0); // neon

 i = TupsAddSub(1500,0); // sodium nitrite

 if (i > ret) ret = i;

 if (ret == 0) printf("No segregation required\n");

 if (ret > 0 && ret <= 10)

 printf("Segregation of degree %d required between these 2 loads\n", ret);

 // could use clist to say which ones give the problem

 if (ret > 10) printf("Load not valid");

(Note that 1065 needs to be 'away from' 1230. However, since both units are 'closed', this requirement is automatically
satisfied, and no clash is reported. 1500 needs to be 'separated from' both 1230 and 1790.)

